7 Elasto-plasticidade e não-extensividade termodinâmica Resultados experimentais

7.1 Introdução

Este capítulo analisará o desenvolvimento da não-extensividade termodinâmica no modelo geomecânico elasto-plástico apresentado no capítulo anterior.

Neste sentido, chama a atenção o fato de que a literatura nada registre à respeito da aplicação da não-extensividade estatística a sistemas elasto-plásticos da mecânica do contínuo, embora simulações realizadas nestes sistemas sugiram fortemente a presença deste fenômeno.

Mais especificamente, os problemas atinentes à determinação do padrão espacial de diferentes estruturas geológicas normalmente apresentam a chamada *dependência da malha (mesh dependency, mesh alignment)*, fazendo com que as magnitudes envolvidas – p.ex.,energia potencial de deformação, deslocamentos, tensões e deformações – sejam caracterizadas por sua *não-objetividade* [120,123,161,162].

Estas anomalias parecem estar relacionadas à natureza não-local das interações elasto-plásticas e à conseqüente perda de aditividade de algumas grandezas tensoriais, tornando o problema, do ponto de vista da teoria das equações diferenciais em derivadas parciais, mal colocado *(ill-posed)* (p.ex., perda do caráter hiperbólico das equações diferenciais que descrevem o problema dinâmico) [120,123,163,164].

A prática corrente nestes casos é trabalhar-se com os denominados *contínuos generalizados*, que permitem incluir em sua formulação a aludida não-localidade de formas variadas, seja por intermédio de contínuos com micro-estrutura [165,166,167], modelos com propriedades dependentes do tempo (viscosos) [120,168,169], contínuos não-locais [170,171] e aqueles baseados na plasticidade gradiente [172,173,174].

Este capítulo tem por objetivo aplicar a formulação generalizada de Tsallis no trato da referida não-aditividade, embora ainda no âmbito da mecânica do contínuo clássico de Cauchy. Assim, avaliar-se-á o parâmetro entrópico *q* para o modelo de plasticidade do tipo Mohr-Coulomb utilizando-se da metodologia (A) descrita no capítulo 3, ou seja, aquela fundamentada na sensibilidade do sistema às condições iniciais.

7.2 Determinação do parâmetro não-extensivo pelo procedimento (A)

No intuito de se determinar q, utilizou-se a chamada *técnica da propagação do dano (damage spreading technique)* [71,72,175], que não vem a ser outra coisa senão a aplicação da expressão 3.29, agora referenciada não mais às condições iniciais, e sim a qualquer passo de tempo da evolução do sistema. Compreende-se, pois, que, sendo o sistema sensível às condições iniciais, ele também o será para quaisquer outras condições.

Para o problema em apreço, tal procedimento perturbativo apresenta o seguinte *modus operandi*: uma vez alcançado o estado auto-organizado (normalmente quando não se formam bandas de cisalhamento adicionais), cria-se uma cópia do sistema original.

Esta cópia é construída por intermédio de uma escolha absolutamente aleatória de um dado elemento, trocando-se, em seguida, o valor correspondente à sua função de plastificação (5.10) pelo de outro elemento, desta feita caracterizado por apresentar a *maior* plastificação. Então, após identificar este exato momento de troca como o *tempo de evolução coletiva* t = 1, as mesmas regras de colapso plástico são aplicadas a ambos os sistemas.

A perturbação originada pela troca das funções de escoamento é avaliada por meio da comparação das respectivas deformações plásticas equivalentes κ desenvolvidas nos dois sistemas evolutivos, utilizando-se para tal a denominada *distância de Hamming (Hamming distance)*, assim definida

$$D(t) = \frac{\sum_{i=1}^{N} \left| \kappa^{(1)}(t) - \kappa^{(2)}(t) \right|}{N}$$
(7.1)

em que o somatório é realizado sobre o número total de elementos finitos integrantes da malha discretizada, e $\kappa^{(1)}(t)$ e $\kappa^{(2)}(t)$ referem-se ao sistema original e sua cópia, respectivamente.

Assim, em concordância com o exposto no capítulo 3, os valores de δ e q, integrantes da expressão 3.35, poderão ser determinados, sendo o primeiro relacionado à inclinação do ajuste em lei de potência da curva ($\langle D(t) \rangle / \langle D(1) \rangle$) vs t plotada num gráfico bi-logarítmico.

7.3 Resultados experimentais

As figuras (7.1) a (7.6) ilustram a evolução coletiva temporal *t* do dano normalizado ($\langle D(t) \rangle / \langle D(1) \rangle$), de acordo com a estratégia exposta anteriormente, a média sendo obtida de 4 (quatro) realizações distintas.

Figura 7.1 – Evolução temporal coletiva t do dano normalizado <D(t)>/<D(1)> (média de 4 (quatro) realizações). A reta de inclinação δ = 3.497 (q = 0.71) é um guia para os olhos. O coeficiente de amortecimento é igual a 0.001 (CC1, MPP).

Figura 7.2 – Evolução temporal coletiva t do dano normalizado <D(t)>/<D(1)> (média de 4 (quatro) realizações). A reta de inclinação δ = 3.217 (q = 0.69) é um guia para os olhos. O coeficiente de amortecimento é igual a 0.01 (CC1, MPP).

Figura 7.3 – Evolução temporal coletiva t do dano normalizado (D(t)) = 0(1) (média de 4 (quatro) realizações). A reta de inclinação δ = 3.295 (q = 0.70) é um guia para os olhos. O coeficiente de amortecimento é igual a 0.001 (CC1, MPA).

Figura 7.4 – Evolução temporal coletiva t do dano normalizado <D(t)>/<D(1)> (média de 4 (quatro) realizações). A reta de inclinação δ = 3.366 (q = 0.70) é um guia para os olhos. O coeficiente de amortecimento é igual a 0.001 (CC2, MPP).

Figura 7.5 – Evolução temporal coletiva t do dano normalizado <D(t)>/<D(1)> (média de 4 (quatro) realizações). A reta de inclinação δ = 3.234 (q = 0.69) é um guia para os olhos. O coeficiente de amortecimento é igual a 0.01 (CC2, MPP).

Figura 7.6 – Evolução temporal coletiva t do dano normalizado <D(t)>/<D(1)> (média de 4 (quatro) realizações). A linha cheia de inclinação δ = 8.590 (q = 0.88) é uma lei de potência, ao passo que a tracejada é uma exponencial (gráfico semi-log). O coeficiente de amortecimento é igual a 0.001 (CC3, MPP).

Percebe-se nitidamente que, após um período inicial transiente, o sistema auto-ajusta a evolução do dano segundo uma lei de potência, o que é um indicativo bastante forte do estado crítico auto-organizado.

É claro que, de modo similar ao que ocorreu na determinação das dimensões generalizadas, a utilização de uma malha com maior número de elementos deverá fornecer uma região em lei de potência bem mais extensa, *não variando, contudo, os valores do índice entrópico!!*

Efetivamente, uma rápida inspeção de (3.36) permite averiguar que o referido parâmetro só depende dos pontos extremos do espectro de singularidades.

Por seu turno, os valores de $\delta e q$ são mostrados na tabela 7.1.

Condições	Valores de	Valores	Valores	Valores
de	c_m , $\phi_m e$	de	de	de
contorno	ψ_m	amortecimento	δ	q
CC1	MPP	0.001	3.497	0.71
compressão	MPP	0.01	3.217	0.69
biaxial	MPA	0.001	3.295	0.70
CC2	MPP	0.001	3.366	0.70
compressão	MPP	0.01	3.234	0.69
biaxial				
CC3	MPP	0.001	8.590	0.88
compressão				
uniaxial				

Tabela 7.1 – Valores do índice entrópico de Tsallis estimado pela sensibilidade do sistema às condições iniciais ("mixing").

Como se pode notar, uma vez que $\delta > 0$ em todos os casos investigados, o modelo geomecânico em estudo pode ser descrito, no que respeita ao tipo de *mixing* observado, como *fracamente sensível* às condições iniciais, ou, por outra, é *fracamente caótico*.

O valor do parâmetro entrópico determinado mostrou-se distinto da unidade, situando-se entre 0 e 1, sendo 0.70 um valor típico.

Uma pertinente observação diz respeito à condição CC3, relativa à compressão uniaxial do material previamente rompido.

Segundo os dados expostos até agora, sugere-se que a formação de padrões espaciais no modelo geomecânico em estudo relaciona-se diretamente ao acoplamento espaço-temporal de longo alcance.

Entretanto, constatou-se no capítulo precedente, com base na figura (6.18), uma completa ausência de padrões espaciais em forma de bandas cisalhantes, o que leva a crer que tal possa estar relacionado à tendência do sistema já rompido de concentrar informações a nível espacial, passando a desenvolver interações eminentemente locais, fazendo com que o parâmetro entrópico se aproxime cada vez mais da unidade.

Além disso, como já se assinalou, o exame da figura (6.7) permite notar uma evolução temporal em forma de lei exponencial. Efetivamente, a figura (7.6) indica que, à medida que $q \rightarrow 1$, o ajuste da curva exponencial se faz cada vez mais adequadamente aos dados experimentais, deixando o sistema paulatinamente de ser auto-organizativo.

Portanto, os dados empíricos sugerem que, para o modelo elasto-plástico em análise, a ausência de padrões espaciais bem definidos parece estar relacionada ao desenvolvimento de caos forte a nível temporal, conferindo ao sistema uma distribuição de informações extremamente localizadas.

Por outro lado, para os casos de compressão biaxial, pode-se afirmar que, nos marcos dos valores dos parâmetros adotados nestas análises, o modelo geomecânico, descrito pela plasticidade de Mohr-Coulomb, confirmou ser um sistema auto-organizado criticamente, apresentando não-extensividade entrópica, e evoluindo na fronteira entre ordem e desordem.